Potential of metal-organic frameworks for separation of xenon and krypton.

نویسندگان

  • Debasis Banerjee
  • Amy J Cairns
  • Jian Liu
  • Radha K Motkuri
  • Satish K Nune
  • Carlos A Fernandez
  • Rajamani Krishna
  • Denis M Strachan
  • Praveen K Thallapally
چکیده

CONSPECTUS: The total world energy demand is predicted to rise significantly over the next few decades, primarily driven by the continuous growth of the developing world. With rapid depletion of nonrenewable traditional fossil fuels, which currently account for almost 86% of the worldwide energy output, the search for viable alternative energy resources is becoming more important from a national security and economic development standpoint. Nuclear energy, an emission-free, high-energy-density source produced by means of controlled nuclear fission, is often considered as a clean, affordable alternative to fossil fuel. However, the successful installation of an efficient and economically viable industrial-scale process to properly sequester and mitigate the nuclear-fission-related, highly radioactive waste (e.g., used nuclear fuel (UNF)) is a prerequisite for any further development of nuclear energy in the near future. Reprocessing of UNF is often considered to be a logical way to minimize the volume of high-level radioactive waste, though the generation of volatile radionuclides during reprocessing raises a significant engineering challenge for its successful implementation. The volatile radionuclides include but are not limited to noble gases (predominately isotopes of Xe and Kr) and must be captured during the process to avoid being released into the environment. Currently, energy-intensive cryogenic distillation is the primary means to capture and separate radioactive noble gas isotopes during UNF reprocessing. A similar cryogenic process is implemented during commercial production of noble gases though removal from air. In light of their high commercial values, particularly in lighting and medical industries, and associated high production costs, alternate approaches for Xe/Kr capture and storage are of contemporary research interest. The proposed pathways for Xe/Kr removal and capture can essentially be divided in two categories: selective absorption by dissolution in solvents and physisorption on porous materials. Physisorption-based separation and adsorption on highly functional porous materials are promising alternatives to the energy-intensive cryogenic distillation process, where the adsorbents are characterized by high surface areas and thus high removal capacities and often can be chemically fine-tuned to enhance the adsorbate-adsorbent interactions for optimum selectivity. Several traditional porous adsorbents such as zeolites and activated carbon have been tested for noble gas capture but have shown low capacity, selectivity, and lack of modularity. Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) are an emerging class of solid-state adsorbents that can be tailor-made for applications ranging from gas adsorption and separation to catalysis and sensing. Herein we give a concise summary of the background and development of Xe/Kr separation technologies with a focus on UNF reprocessing and the prospects of MOF-based adsorbents for that particular application.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Facile xenon capture and release at room temperature using a metal-organic framework: a comparison with activated charcoal.

Two well-known metal-organic frameworks (MOF-5, NiDOBDC) were synthesized and studied for facile xenon capture and separation. Our results indicate that NiDOBDC adsorbs significantly more xenon than MOF-5, and is more selective for xenon over krypton than activated carbon.

متن کامل

Metal–organic framework with optimally selective xenon adsorption and separation

Nuclear energy is among the most viable alternatives to our current fossil fuel-based energy economy. The mass deployment of nuclear energy as a low-emissions source requires the reprocessing of used nuclear fuel to recover fissile materials and mitigate radioactive waste. A major concern with reprocessing used nuclear fuel is the release of volatile radionuclides such as xenon and krypton that...

متن کامل

Xenon and krypton separation in a chromatographic column packed with granulated nano NaY zeolite

In order to investigate the gas separation ability of a column packed with nanozeolitic material, nano NaY zeolite was synthesized and granulated. These uniform granules packed in a chromatographic column were utilized for separation of Xe and Kr under various operating conditions. With regards to the response peaks obtained from trace injections of Xe and Kr into the column, the first and seco...

متن کامل

The Isolation of Organic Compounds using Organophilic Pervaporation Membranes

Organophilic membranes provide a method of recovering organic compounds by pervaporation, which exploits the selective transport of the organic phase. The main application is in the extraction of bio-alcohols from aqueous solution. The effect of membrane composition on performance in transporting alcohols and not water at improved rates is the focus of this review. In th...

متن کامل

Separation of rare gases and chiral molecules by selective binding in porous organic cages.

The separation of molecules with similar size and shape is an important technological challenge. For example, rare gases can pose either an economic opportunity or an environmental hazard and there is a need to separate these spherical molecules selectively at low concentrations in air. Likewise, chiral molecules are important building blocks for pharmaceuticals, but chiral enantiomers, by defi...

متن کامل

Metal-organic framework materials as nano photocatalyst

Photocatalytic degradation of toxic organic compound in water, soil and air by semiconductor catalysts such as TiO2 and ZnO have received much attention over the last two decades. However, the low quantum yield, easy agglomeration and difficult post-separation of these inorganic catalysts limit their application for large-scale applications. Metal-organic frameworks (MOFs) are the latest class ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Accounts of chemical research

دوره 48 2  شماره 

صفحات  -

تاریخ انتشار 2015